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We describe here the theory underlying a computer program we have developed for the 
calculation of nonrelaGvisGc numerical electronic MCSCF wavefunctions for atoms, The for- 
mulation and program are based on earlier developments and programs by Froese-Fischer 
[The Harfree-Fock Method for Afoms (Wiley, New York, 1977)] with some significant 
moditications and extensions to be described here explicitly. fc 1986 Academic Press, Inc. 

I. INTRODUCTION 

The direct numerical determination of the electronic wavefunctions for atoms has 
a long history and the underlying theory is well developed already [2]. In the cen- 
tral tield case it is suflicient to carry out a one-dimensional numerical integration of 
the SCF or MCSCF equations, which can be done rapidly and with high numerical 
accuracy, using the finite difference method [3]. If the finite difference integration 
of the differential equations and the required quadratures are implemented with a 
consistent truncation error, the Richardson extrapolation [4] provides an effective 
control of the numerical accuracy achieved. This and the greater computational 
efficiency make the numerical determination of electronic wavefunctions for atoms 
superior to the basis-function expansion alternative. A drawback, however, is the 
difliculty to obtain convergence in solving the genera1 MCSCF equations. The 
quadratically convergent algorithms developed for basis-function calculations [5] 
cannot be extended and implemented easily to the direct numerical determination 
of the orbitals. 

In the following we will give a brief formulation of the MCSCF theory as it 
applies to the numerical determination of atomic wavefunctions. Several procedures 
of increasing computational complexity to obtain convergence in the solution of the 
nonlinear MCSCF problem will be described; procedures we have implemented and 
used effectively. In Section IV we will present some numerical details concerning the 
integration grid, the consideration of the boundary conditions and the evaluation of 
the electron interaction functions. We will make some remarks about the selection 
of the initial shell-functions and conclude with the results of some illustrative exam- 
ple calculations. 
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II. MCSCF-THEORY FOR ATOMS 

The total wavefunction of a state K, which is an eigenfunction of the operators 
L.‘. Lz, S2> and ,Sz is written as 

where the conliguration state functions (CSFs) @, are mutually orthonormal 
minimal superpositions of Slater determinants (SDS) obtained via the appropriate 
coupling of the angular momenta, such that the CSFs are eigenfunctions of L2, L,=> 
s2> and sz with all the same eigenvalues as desired for the state considered. The 
SDS are constructed from spin orbitals 

$;.j,Hm = pj.jtf")/rYj,E(Q, d 4s) (2) 

with the shell-functions PAi the same for the (2A+ 1) components of YH and the I~ 
and fl spin components of a shell. To keep the notation simple we will use a single 
index, i, for the shell functions, dropping the index A: which signifies the angular 
momentum i = A(i) for the shell-function P,. 

The unknowns for the determination of the state-functions !PK are now the 
expansion coeflicients CIK and the shell-functions Pj. The former are obtained as 
the solutions of the matrix eigenvalue equation 

where E is diagonal with the eigenvalues EK and C is the matrix with the eigenvec- 
tors CK as columns. Equation (3 ) obtains, provided 

<@, I @.f) = h,J 14) 

as demanded for the construction of the CSFs. This is achieved readily if the spinor- 
bitals are chosen orthonormal 

( Yii,no 1 Y;. iM.c.) = cs;;., dc*. &, (5) 

which demands that shell-functions of the same l-value are maintained orthonor- 
mal, i.e.. 

be real, which may be done Note that we have restricted the shell-functions to 
without loss of generality. 
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The energy matrix elements in (3) are obtained explicitly as 

, 

where the one electron operator 

/$A]= -1,2-&+y 

depends explicitly on the A-value of the shell. 
The structure factors y and r’ are the transition matrix elements of the first and 

second order reduced density matrix in the space of the shell-functions. They are 
determined analytically through the angular momentum coupling construction of 
the CSFs and an integration over the spin-functions and spherical harmonics, 
specifying the spin-orbitals together with spherical harmonics of the Laplace expan- 
sion of the l/ri2 operator [6]. Note that the yV’s will be zero unless A(i) = A(j). 

The effective structure factors of a specific state, K, are determined once Eq. (3) is 
solved as 

They would enter the energy functional to be minimized for the determination of 
the orbitals optimal for the characterization of state K. If state K is not the lowest 
state of a particular symmetry it is advisable to calculate this excited state together 
with all the lower states of same symmetry, thus maintaining an upper bound for 
the excited state. In this case it is also appropriate to deline and use suitably 
averaged structure factors [7] 

with xKmK = 1 to avoid that the orbitals, once they are optimized for an excited 
excited state alone, would give in the CI calculation for this state a lower CI energy 
than for the state, which should in actuality be lower. The weights used in Eq. (10) 
are free except for their normalization. Deficiencies due to this averaging can be rec- 
tified through the inclusion of extra CSFs in the CI-expansion. Note that this 
averaging of the structure factors is also advantageous, if a common orbital set is 
desired in the characterization of several states. Such a demand would greatly 
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facilitate the later calculation of transition properties between such states. We will 
deal in the following with these general, averaged structure factors. 

The energy functional to be minimized with respect to a change in the shell- 
functions is 

with the restrictive conditions of orbital orthonormality introduced using the 
Lagrange multipliers .sY. Note that some of the off-diagonal Lagrange multipliers 
will be zero, i.e., if A(i) # A(j), or may be chosen to be zero (a) between closed shells 
and (b) between shells among which a full CI expansion is used. 

Extremalization of the energy functional, Eq. (11) with respect to a change of the 
shell-function Pi leads to the standard MCSCF-Fock equations 

with the two-electron potentials 

The gradient operator Vj denotes here the vector of partial derivatives with respect 
to the independent variables in Pj. In a numerical representation of the shell 
functions Pi, the independent variables would be the values of Pj at the grid points. 

Equations ( 12), coupled one-dimensional second order differential equations 
may be solved using standard finite difference methods [3-j> an appropriate dis- 
cretization of r, and recognizing that at the solution 

Kowever, even with the structure factors Iixed, Eqs. (12) depend explicitly on the 
solution functions P, because of the two-electron potential; thus an iteration techni- 
que is indicated. For the solution functions we must have sU = .sji [8]. Note also 
that the structure factors depend implicitely on the shell-functions, the solutions of 
Eqs. (12j. 
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III. SOLVING OF THE MCSCF PROBLEM 

A. The Standard Procedure 

Quadratically convergent algorithms to solve the MCSCF problem [5] vary the 
Lagrange functional of the energy, Eq. ( 11). as a total, including the dependency of 
the structure factors on the CI coefficients, which depend on the shell-functions. In 
the standard MCSCF methods these dependencies are considered decoupled. An 
outer iterative CI-cycle solves the regular equation (3) with lixed shell-funtions, 
thus determining the effective structure factors. The inner iterative SCF cycle solves 
the general Fock equations (12), with the structure factors fixed to obtain new 
shell-functions. To accomplish this a minor innermost iterative cycle is needed to 
solve Eqs. (12), with structure factors and two particle potential fixed. This we 
accomplish by solving for the m shell functions 

(Di - &;J Pj = xi (15) 

with 

and 

(17) 

using inverse iteration recomputing &ii in each step. 
In total we have a threefold nested iterative cycle of the following structure: 

(1) Obtain a set of starting functions Pi, 
(2) orthonormalize the Pi’s, 
(3) compute the two-particle potentials uk[?. 

Start CI-cycle: 

(4) Construct H and solve HC= CE. 
(5) If EK desired is a minimum and the inner selfconsistency conditions are 

satislied, we are done, else: 
(6) Compute the effective structure factors. 

Start SCF-cycle 

(7) Compute VjE for i= 1, nz and 

Ed + .cji = l/2( ( Pi / VjE) + (ViE 1 Pj)) for j= 1, m. 
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(8’) Compute Di, Xj, and VJ(E) for i= 1, m. 

(9 1 If dl II VjW?l II are small enough, the SCF cycle is converged, go to step 
(4 ), else: 

Start inverse iteration cycle for i= 1, m: 

(10) Obtain new Pi’s from Pi = (Di - E~;) m-1 A’;. 

(11) Normalize Pi's and compute ,Y,~ = (Pj 1 DtPj - Xi j. 
(12) If the change in Pj or sii was too large! go to step ( 10): else: 

End inverse iteration: 

( 13 ) 0rthonormalize new Pi’s, 

(14) Compute the two particle potentials Ukl,, and go to step (7). 

End SCF cycle: 
End Cf cycle. 

This iterative process is by far not universally convergent; without modification it 
will converge only for the most benign SCF calculations. A significant improvement 
of the convergence can be achieved with the following linear search technique after 
step (14). 

Let us denote the quantities used in SCF iteration PI in steps (7) and (8) as Pn, i?’ 
and VL(En) and the resulting vector in step (13) as pn+*. Note: the vectors PI’, 
P en? ‘, and VL{Ej used here are the combination of all shell-function vectors into 
one single supervector. We define a linear search direction by 

and calculate 

where (P’ + ,IA~) is to be understood as the set of vectors obtained after adding ,U 
to P” and orthonormalizing. The new shell-functions are obtained as 

P r2 + l = (P’l+ Ad). 

For the minimum search in Eq. (19 j to determine I. we fit, following the Davidon 
algorithm [9], a cubic polynomial to the data points E(P), E(P” + pd) and the 
two directional derivatives dr. VL { ,5( P’) 1 and dT * VL {IZ( P” +- pd) ;,. In this linear 
search the steps (I)-(4), (7), and (8) have to be carried out a few times, often just 
twice. 

This procedure is akin to the damping process used by Froese-Fischer [l ]7 
however, here with an optimal damping coefticient 2 determined. It leads in almost 
ai1 cases rapidly to convergence. To be sure, it should be combined with an effective 
dynamical control of the convergence threshold, in order not to carry out 
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unnecessary inner iteration cycles, while the outer iterations are still far from con- 
vergence. It is also advisable to permit in the initial iterations the selective 
optimization of individual orbitals while others are held frozen. 

It is conceivable that the following two strategems might yield an additional 
improvement in the convergence: 

(a) Use of a multidimensional nonlinear optimization [9] in the deter- 
mination of the optimal damping factors with 

and 

P ;+ ’ = (P; + Aj dj), (221 

where the optimal Ai’s are determined by the nonlinear minimization of 
E( P; + pi dj). 

(b) Unitary transformations among the new shell-functions in an SCF 
iteration, such as to obtain a symmetric Lagrange multiplier matrix [l, lo]. 

We have not yet implemented these two options into our program, because our 
experience with the simpler linear search outlined above has been sufficiently good. 
To be sure, there are situations where the coupling of the CI-mixing coeflicients 
and the orbitals is too strong and our improved standard procedure will converge 
only slowly or not at all. In this case a quadratically convergent process, including 
explicitly the CI-orbital coupling is called for. 

B. A Quadratically Convergent Numerical MCSCF Procedure 

The classical quadratically convergent algorithm to solve a nonlinear problem is 
Newton’s method, which leads to a set of linear equations for the independent 
variables with the Hessian, the matrix of all partial second order derivatives as the 
coeflicient matrix and the vector of lirst order partial derivatives as right-hand side. 
This procedure derived and used effectively in MCSCF calculations with basis- 
functions [5] cannot be used efliciently, according to our experience, in numerical 
MCSCF calculations for two reasons: 

(i) The Hessian matrix of the dimension (N = number of shell-functions x 
number of grid-points) will be exceedingly large and full, not banded or sparse. 

(ii) This large linear system, which has to be solved iteratively [ 111 in each 
Newton-step, is nearly singular and becomes especially unstable if some shells are 
only weakly occupied. 

The numerical instability and the amount of computational effort required to apply 
Newton’s method directly nullilies the computational advantages of the direct 
numerical determination of the shell-functions. 

As an alternative we have implemented a gradient method of quasi-Newton type 
[9] to minimize the energy directly. Such methods satisfy so-called “quadratic ter- 



NONXELATIVISTIC NUMERICAL MCSCF FOR ATOMS 297 

mination conditions” i.e.> they solve, in the absence of rounding errors a quadratic 
minimization problem in at most N (number of unknowns) iterations. The par- 
ticular algorithm we have implemented is the (complementary DavidonFletcher 
Powell) CDFP-method [9] where in each step an improved approximation to the 
inverse of the Hessian matrix is obtained by adding to the old approximation a par- 
ticular symmetric rank-two matrix. 

The detailed structure of this algorithm for the numerical MCSCF is as follows: 

(1) Obtain a set of starting functions PO. 
(2 ) Orthonormalize pi’s and compute @ and VL{L?’ 1. 
(3) Set k=O and L?‘= I (Nx N). 

Iteration cycle: 

(4) Deline the search direction. 

dk= -H’.VL{Ekj 

(5) Find the A which minimizes E( P’ + 18); if no minimum can be found 
then 

(a) if k = 0 we are done, 
(b) if k # 0 go to (3), restart; else: 

(6) Set P ’ + ’ = ( Pk + A, tik) orthonormalized compute Ek + ’ and VL { Ek + ’ j. 

(7) If ~~VL{Ek+‘j~\ is small enough we are done; else: 
(g) With 0 = A dk compute 

~zJL{E~+~)-~L{E~), 

h = Hk . y, 

setk=k+landgoto4. 

The computation of E in step (2) and (6) implies the solution of the eigenvaiue 
problem, Eq. (3). Naturally the computations of E and VL{E} are to be performed 
with orthonormalized shell-functions only, using the procedures as outlined in steps 
(3), (4) and (6b(8) of the first algorithm. Some advantages of the CDFP-method 
are 

(i) it always converges to a minimum (if existent j, this may be a local 
minimum though; 

(ii) no second derivatives are needed; 
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(iii) no ill-conditioned linear system must be solved; 
(iv) the update of Hk requires only U(N’) operations and is, since Hk is 

positive delinite, numerically stable. 

The major drawback of this method is that it requires much more com- 
puteroperations, assuming N iterations, &(N3), and store, G(N’), with N= number 
of shell functions x grid points, than the algorithm given for the standard MCSCF 
method. Providing good starting functions and freezing some already well-deter- 
mined orbitals initially can reduce the computational demand significantly. Fre- 
quently we have found convergence in much less than N cycles. 

IV. NUMERICAL CONSIDERATIONS 

In this section we describe in detail the numerical procedures implemented to 
carry out the computations of the energy and its gradients needed in the algorithms 
outlined above. 

A. Choice of the Grid 

In the linite difference method an equally spaced grid to represent the functions 
and operators is desirable. However, an equidistant discretization of r directly is not 
suitable because 

(i) the kinetic energy operator will be inappropriate near the origin, 
(ii) errors will be caused by the cutoff at some finite r, 

(iii) the desired functions Pi(r) will in general be rapidly varying for small j 
and slowly varying as r gets large. 

We decided not to use a logarithmic grid [ 1, 21, which requires an analytical origin 
expansion, but rather to map the iminite interval of r[O, ZJ] onto a linite one with 
,Y[O, 1] using the rational transformation 

p=L- 
r+b 

with b>O a real parameter, which controls the distribution of points in r. For ~1 
equidistant gridpoints we obtain 

top=4 rP = b 
n+l /Z-p+1 

for p = 1, 2,..., n (24) 

with the boundary points 
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and the step-size 

1 
A=--. 

n+l 
(2jj 

The resulting Jacobi determinant of the coordinate transformation gives 

It is useful to detine transformed radial functions in the new rational coordinate as 

Using this and the volume element, Eq. (26), we obtain for the matrix elements of 
an arbitrary operator C the form 

For the required normalization. two- and one-electron integrals, we obtain with the 
transformed shell-functions 

<f’i I p,jr = <Qi I Qj>p, (29) 

<piI u,cIvtrj I f’j)r zz <Q;l u,clv(~) I Qi)p 
i30) 

w4h 

B. Discretization of the One-Electron Operator 

Usmg the discretization all functions become vectors of length k~ and the Fock 
equations turn into a set of nonlinear algebraic equations, with the operators m 
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general banded n x n matrices. The Coulomb and centrifugal potential parts in It(p) 
Eq. (33), become diagonal matrices, and for the kinetic energy part we choose 2 
five-point formula to approximate the second derivative. Usingf(p) = (1 -p)’ Q(p 
we get 

+ 16jlp+ U-f(p+2)]+W4). (341 

This formula applies directly for p B 2 and also for p = 2 because we have j(O) = 0. 
The points at the large p boundary p = N - 1 and JI = rr require no special attention, 
since for JJ = n -I- 1 the function and all its derivatives are zero. Only the point p = 1 
needs to be considered separately, if the order of the approximation is to be 
retained through /r4. One possibility would be to use forf”(p,) a forward difference 
formula of 0(K’). This would lead to a matrix zl for the d2/dp2 operator, which is 
pentadiagonal except in the tirst row. It is then appropriate to use the symmetric 
form (A + d ‘)/2 because of the hermiticity of the problem considered here. We, 
however, decided to use a different approach, which retains the symmetry and pen- 
tadiagonal structure of A. For this we use the asymptotic behavior of the radial 
functions Q at the origin 

-gQ(O)+$ [(A+ l(A+2)-Zb,-$Q(O) 

derived in Appendix 1. This leads, see Appendix 2, to the approximation 

with 

u =~-~~j.(1+~z)21-~[(~+2)-~z/(~+1)l 2 m 1 +/z[(/I+2)-!IZ/(A+ I)]. (37) 

For all integrations a McLaurin corrected trapezoidal rule is used, which is for 
analytic functions of fourth order 

Here the derivatives j-‘(O) fand j-‘( I ) vanish, since we have 
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and 

thus 

C The Two-Electron Potentials 

For the calculation of the two-electron potentials it is appropriate to derive am 
soive a differential equation. In the rational coordinate Q we have 

with 

Defining 

and taking the derivatives of Ykj,, and Z,</,, with respect to p, leads to an initial value 
problem of two first order differential equations [l] of the form 

and 



302 BIEGLER-K6NIG AND HINZE 

with 

Taking the derivative of Eq. (42b) and substituting ZkfU gives an equivalent two- 
point boundary value problem 

with 

Yk[,,(OJ = Yk,,,( 1) = 0. 

Because of the special form and stability of the differential equation (43) it is far 
more efficient and accurate to solve the boundary value problem. Since first 
derivatives are absent in Eq. (43) we can use Numerov’s method [ 121. &fining 
.fp =dv+ lVbptl -P~II’, ,gp =&hpI Q,~P~), ml Yp = Yk&pJ we get 

(2v+l)-‘[(~~-,~12-l/~2) Ype, +(10,fp/~2+2/h~) YP+(&+J12-l/P) YP+,] 

= ( gp--, + lo& + gp + , )/I2 + O(P) (44) 

with the boundary values 

.foYo=~?+,Y~,+, =Yo=Y,!+l =go=gr,:+1 =a 

To compute y,, J’~...., JJ,, a tridiagonal system 

must be solved with 

up = (~OhffJf2 + 2)/(2v + I j, 

and 

bp = (P&/l2 - 1)/(2\~ + 1) for p = l,..., n 

dp = Cgp-, + 10gp + gp+ ,) F/12. 
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We note that the coefficient matrix does not depend on the radiai functions. Hence 
it is possible to perform the LU decomposition of the tridiagonal matrices for ah 
v-values only once before starting the integration. The computation of the two-efec- 
tron potentials reduces then just to the back-substitution part of solving the linear 
sy5tem. 

D. Estimation of the Numerical Error 

We have been careful to implement all procedures for the evaluation of the 
energy with a truncation error of 0(/z’). The error of c(/r’j in the determination of 

VE at the origin does not spoil this, see Appendix 2. Thus an extrapolation [4] is 
possible once calculations of the same system have been performed with different 
step-sizes using 

EJO) = E(h) + Ah1 (4) 

or even the s-algorithm [13]. In our implementation L should be between 3 and 4: 
our experience indicates r z 3.8. An estimate of the numerical error is given by 

thus we have in this numerical process a rigorous control on the accuracy~ 

V. THE STARTING FUNCXIONS 

The shell-functions to start the MCSCF iterations can be obtained frequently 
from some prior calculations of a similar problem. If no such results are available 
we obtain them by integrating the atomic system using the model-potentral 
suggested by Garvey, Jackman, and Green [ 14]. This requires simply the 
numerical integration of the one-dimensional differential eigenvalue equation 

With VGi(r) the model potential for the shell-function Pj as suggested by 6reen el 
al., i.e., 

with Ne the number of electrons of the atom and the constants q and <, which have 
been chosen to minimize the energy tabulated [14]. 

The integration is carried out again using the rational coordinate p as described 
above and PIumerov’s method. It is our experience that the shell-functions thus 
obtained approximate the standard H-F shell-functions rather welt. 
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To obtain starting shell-functions for purely correlating orbitals- which are not 
present in the standard H-F conliguration, we again use Eq. (48) with the Green 
potential I’Gi modilied, such as to yield orbitals with the appropriate node struc- 
ture but sufliciently localized in the space where the shells to be correlated are 
localized. 

VI. SOME! EXAMPLES AND CONCLUSION 

We conclude the description of our numerical MCSCF program for atoms by 
presenting a few selected results of calculations for ground and excited states. These 
are not to represent systematic and detintive studies but just to indicate the 
workings and accuracy of our program. The results are collected in Table I. Inspec- 
tion of these results reveals a few points: 

(i) To obtain well correlated wavefunctions a large number of configurations 
is necessary, this holds in particular if excited states are desired. 

(ii) Results obtained with just one grid-size should be used with caution; as 
the Richardson extrapolation indicates, the finite difference calculation with too few 
points may feign too good a result. 

We have described and implemented a numerical MCSCF program of great 
generality and a few novel numerical aspects. The effectiveness of the program has 
been demonstrated. To be sure, for calculations with extensive configuration 
interaction, possible with this program, the calculation of the structure factors not 
detailed here, needs to be and has been automated also. 

We believe this program represents a valuable alternative to the well documented 
and widely used programs of C. Froese-Fischer [2] with the following advan- 
tageous characteristics: 

(a) Any combination of configuration can be included into the MCSCF 
functions. 

(b) the SCF convergence is improved through the automatic and optimal 
determination of the damping factor 2. 

(c) Even in the most difficult cases convergence can be obtained using the 
quadratically convergent nonlinear optimization, though this is computationally 
expensive. 

APPENDIX 1: THE RADIAL FUNCTIONS NEAR THE ORIGIN 

To investigate the behavior of Qi near the origin we use the power series expan- 
sion 

Q(p)= f qp'+-Y 
i=O 
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Substituting this into the Fock equation, Eq. (12), yields 

with J = A(i) the Z-value of the shell Qi studied. 
Rearranging gives 

LZJCX(fX-l)-~(l+l)]/YZ 

+ {2bZ+uo[A(lw+ 1)-A(L f)-21(jU+ lj] 

+u,[E(E+ l)-A(L+ 1)]} ~~-‘=P(~X) 

and equating the coefficients of pa-’ and p’-’ equal to zero results in 

LX=/?+1 

and 

u, = &[(A + I )(A + 2) - bZ]/(i + 1). (A5) 

Hence we obtain 

with the derivatives of order less than (i + 1) all zero. 

APPENDIX 2. DISCRETIZATION AT THE BOUNDARY p=O 

For the five-point difference formula, Eq. (34) at the point Q( /z ) we need the fit- 
titious point Q( -/z). To this end we expand the radial function Q with angular 
quantum number >. around p = 0 and obtain 

and 

with the notation Q(0) v + ‘) the (I + 1) th derivative of Q with respect to p at p = 0. ” 
Adding and subtracting the Eqs. (A7) gives 
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Q(O) [Q(h) + ( -1)’ Q( -A)] + O@*). 

Combining this with Eq. (A6) yields 

The element for p = 1 required in Eq. (34) is 

j-(-l)= -(l+h)*Q(-1) 

As this enters Eq. (34) multiplied with l/12/2’ to yield Eq. (36) the error term will be 
O(lz’ +2). However, in an integral this single point will always be multiplied with 
Q(l), which itself is @(I?‘+ ‘) to give an error of order G(/z”+~) multiplied by h, 
thus maintaining the total error term of O(/r4). 
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